Synthesis of 1-Arsanaphthalene

By ARTHUR J. ASHE, III,* DENNIS J. BELLVILLE, and HOWARD S. FRIEDMAN (Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109)

Summary The reaction of 1,4-etheno-1,4-dihydro-1-arsanaphthalene with 3,6-di-(2-pyridyl)-s-tetrazine has been used to generate arsanaphthalene for the first time. The aromaticity of arsabenzene, arsenin (1), is now well established.¹ While arsabenzene is a stable, easily handled compound, the dibenzannelated arsenin, 9-arsa-anthracene,

J.C.S. CHEM. COMM., 1979

is so labile that it can only be obtained in dilute solution at low temperature.^{2,3} The previously unknown monobenzannelated arsenin, 1-arsanaphthalene (4), might be expected to possess an intermediate reactivity and its synthesis seemed highly desirable for our continuing study of aromatic arsenic heterocycles.¹

We now report the first synthesis of 1-arsanaphthalene. The reaction of arsabenzene with benzenediazonium-2carboxylate in CH₂Cl₂ gave a 33% yield of 1,4-etheno-1,4dihydro-1-arsanaphthalene (2), m.p. 45 °C.† In our hands, the pyrolysis of (2) at 300 °C gave only intractable material. Use of the low temperature acetylene abstraction agent, 3,6-di(2-pyridyl)-s-tetrazine (3),⁴ was more satisfactory. A solution of equivalent quantities of (2) and (3) in CDCl₃ slowly evolved N₂, while the ¹H n.m.r. spectrum indicated the formation of 3,6-di-(2-pyridyl)pyridazine. In addition, a low field doublet at δ 10·22 (J 9 Hz) appeared as expected for the C(2)-proton of 1-arsanaphthalene.⁵ However, after several hours at 25 °C, the δ 10·22 signal slowly decreased, indicating the destruction of (4).

1-Arsanaphthalene can be trapped with reactive dienophiles. When a mixture of (2) and (3) was treated with an excess of hexafluorobut-2-yne it gave the 1:1 adduct (5), \dagger m.p. 58.5 °C. Small quantities of 1-arsanaphthalene itself can be isolated from the mixture by g.l.c. This very airsensitive yellow oil shows mass spectral peaks at m/e 190 (M^+) and 115 $(M^+ - As)$. The ¹H n.m.r. spectrum shows the δ 10.22 doublet as well as a more complicated pattern in the normal aromatic region (δ 8.5—7.3).

We thank the National Science Foundation for partial support of this work.

(Received, 25th June 1979; Com. 665.)

† New compounds (2) and (5) are crystalline solids for which satisfactory elemental analyses and the usual range of spectroscopic data have been obtained.

- ¹ A. J. Ashe, III, Accounts Chem. Res., 1978, 11, 153.
- ² P. Jutzi and K. Deuchert, Angew. Chem. Internat. Edn., 1969, 8, 991; H. Vermeer and F. Bickelhaupt, ibid., p. 992.
- ³ However, 10-substituted arsa-anthracenes are more stable. See: H. Vermeer and F. Bickelhaupt, Tetrahedron Letters, 1970, 3255. ⁴ R. N. Warrener, J. Amer. Chem. Soc., 1971, 93, 2346; A. J. Ashe, III, W.-T.Chan, and T. W. Smith, Tetrahedron Letters, 1978, 2537
- ⁵ A. J. Ashe, III, R. R. Sharp, and J. W. Tolan, J. Amer. Chem. Soc., 1976, 98, 5451.